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We present a new method for tracking an interface immersed in a given velocity field
which is particularly relevant to the simulation of unsteady free surface problems using
the arbitrary Lagrangian–Eulerian (ALE) framework. The new method has been constructed
with two goals in mind: (i) to be able to accurately follow the interface; and (ii) to automat-
ically achieve a good distribution of the grid points along the interface. In order to achieve
these goals, information from a pure Lagrangian approach is combined with information
from an ALE approach. Our implementation relies on the solution of several pure convec-
tion problems along the interface in order to obtain the relevant information. The new
method offers flexibility in terms of how an ‘‘optimal” point distribution should be defined.
We have proposed several model problems, each with a prescribed time-dependent veloc-
ity field and starting with a prescribed interface; these problems should be useful in order
to validate the accuracy of interface-tracking algorithms, e.g., as part of an ALE solver for
free surface flows. We have been able to verify first, second, and third order temporal accu-
racy for the new method by solving these two-dimensional model problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The ability to accurately follow time-dependent surfaces is very important in many areas of computational science and
engineering. An important class of such problems is free surface flows, with the free surface representing the interface be-
tween two fluids, e.g., air and water. Computational methods for solving such problems can typically be classified into two
categories: methods which explicitly track the free surface (interface-tracking methods; e.g., [18]) and methods where the
interface is more implicitly defined (e.g., level set methods [17,19,16] or volume-of-fluid methods [9]); we will here focus on
the former class.

Interface-tracking methods (or sometimes also referred to as front-tracking methods) comprise a few essential steps. At
any particular point in time, a velocity field is typically determined from the governing equations within the fluid(s), e.g., by
solving the Navier–Stokes equations. By integrating this velocity field, it is possible to obtain a new position of the interface.

A pure Lagrangian approach applied to an evolving interface is simply based on integrating the velocities of the fluid par-
ticles along the surface to obtain the position of the surface at a later point in time. However, in the context of a numerical
approximation (e.g., using finite-element-based methods), a pure Lagrangian approach is often not a very attractive ap-
proach since it typically results in large deformations of the computational domain.

In the context of free surface flows, the arbitrary Lagrangian–Eulerian (ALE) formulation of the governing equations has
been very successful as a point of departure for a numerical approximation [8,4,12]. A typical approach to updating the free
surface is to enforce a kinematic condition along the surface. This condition has its origin in a continuum description, and
says that the normal fluid velocity has to be equal to the normal domain velocity at any point along the surface. Hence, a
. All rights reserved.
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fluid particle which is present somewhere along the free surface at a particular time will also be present at the free surface at
a later time.

While the kinematic condition enforces a normal condition, a tangential domain velocity also needs to be specified along
the surface; a common choice is to enforce a homogeneous Dirichlet condition for the tangential component [20,2]. This
choice typically reduces the deformation of the computational domain compared to a pure Lagrangian approach, however,
it offers limited control over the quality of the grid used to represent the free surface. In particular, the distribution of the grid
points along the free surface may deteriorate over time, which may ultimately result in severe loss of accuracy (or even
breakdown of the simulation). This latter issue may be dealt with in various ways, e.g., through remeshing or other mesh
update strategies [13,5]. However, the temporal accuracy will typically suffer using such a strategy.

The issue of a non-optimal evolution of the surface representation is particularly acute in the context of using high order
finite elements or spectral elements. The reason for this is related to the fact that such methods depend on locally regular
mappings between a reference domain and the corresponding physical element. If the distribution of the physical surface
points along the free surface becomes very distorted, this mapping may not be so regular anymore, resulting in a loss of spa-
tial accuracy. This will again affect the calculation of tangent and normal vectors, as well as the local curvature, since the
computation of these quantities depends on the coupling between many surface points [11,23].

One could also imagine enforcing the kinematic condition together with a tangential component of the domain velocity in
such a way that the integration of the total domain velocity would: (i) result in an accurate representation of the free surface;
and (ii) maintain a good distribution of the grid points along the surface [5,3]. An obvious challenge with this approach is
how to define the overall domain velocity in such a way that not only good spatial accuracy is achieved (with no need
for remeshing), but in a way that will also ensure good temporal accuracy (better than first order). The goal of this paper
is to propose a way to achieve these two objectives at the same time.

The paper is organized as follows: We first discuss some key aspects associated with the two-dimensional problems we
will focus on, including the notation we will use. We will only discuss the evolution of a surface when it is ‘‘immersed” in a
known two-dimensional velocity field; no partial differential equation will be solved to obtain this velocity field. We will let
the surface evolve in time, and different computational strategies for predicting the surface evolution will be tested and com-
pared. In particular, we will compare two well-known methods with the new approach proposed in this work. Numerical
tests will illustrate the similarities and differences between the methods, and conclusions will be made based on these. This
study is part of an ongoing research project on solving partial differential equations in time-dependent geometries.

2. Two-dimensional interface-tracking

Consider first the front depicted in Fig. 1. Assume that we know the front at time tn. Assume also that a numerical approx-
imation of the front is used, something which requires a surface parameterization. A typical way to achieve this is to use
piecewise polynomial approximations (e.g., finite-element-based methods), which typically introduces grid points.

Assume now that we have an interface with ‘‘optimally” distributed grid points at time level tn. At each point x along the
surface there is an associated velocity field u. This velocity field can be explicitly known (as in our study here), or it can be
given as the solution of an underlying partial differential equation (e.g., the solution of the Navier–Stokes equations in a free
surface problem).

We assume that the velocity at a point along the surface represents the velocity of the corresponding ‘‘fluid particle”. If we
integrate the velocity of all the fluid particles along the surface, we obtain the position of the surface at a later time. This is
what a pure Lagrangian description will give us; the motion of a particle is simply governed by the equation
Fig. 1.
front is
dx
dt
¼ uðx; tÞ: ð1Þ
A front C at time tn with an ‘‘optimal” point distribution. For example, the points can be the nodes along an edge of a deformed spectral element. The
‘‘immersed” in a velocity field and the particles follow the paths of the dashed lines between tn and tnþ1.
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In a computational setting, we can limit the integration of (1) to the grid points, and then use the underlying surface param-
eterization to represent the entire surface at a later time; see Fig. 1. A severe problem with this approach is obvious: we have
no control over the distribution of the grid points at a later time tnþ1. This will again result in a loss of accuracy in the cal-
culation of surface quantities, e.g., tangent and normal vectors, as well as the local curvature.

A great advantage with the ALE formulation is that it introduces a separate domain velocity w (also referred to as the grid
velocity in the context of the discrete problem), which limits the deformation of the computational domain. In an ALE-frame-
work, the position of the interface is advanced according to
Fig. 2.
tangent

Fig. 3.
w � n ¼
same fl
(For int
dx
dt
¼ wðx; tÞ ð2Þ
instead of the pure Lagrangian approach (1).
A continuum description dictates that w � n ¼ u � n (the kinematic condition), where n is the unit normal along the inter-

face. However, no particular condition is required for the tangential component w � t of the domain velocity (t is the unit
tangent vector). A common choice is to set w � t ¼ 0 along the surface, although this is often not an optimal choice; see Figs.
2 and 3.

Let us also comment on the issue of temporal accuracy. First, in the context of simulating unsteady free surface flows, the
velocity field is determined from the governing equations, e.g., using an ALE formulation. The associated discrete spatial
operators of the Navier–Stokes equations are all time-dependent, and the computation of the velocity, pressure and geom-
etry represents, in principle, a fully coupled system. Due to the complexity of solving such a fully coupled system, a segre-
gated approach is preferred. To this end, a new velocity field is computed based on the most recent geometry
configuration(s), while a new geometry is computed by integrating the computed velocity field [12,1]. Integration of (1)
and (2) is therefore commonly done using an explicit method; often an explicit multi-step method (e.g., Adams–Bashforth)
is preferred [10,2]. If the velocity fields (u and w) are sufficiently regular, we expect to achieve higher order temporal accu-
racy (second and third) in terms of the location of individual points along the front. As mentioned above, this approach may
yield limited control over the distribution of the points along the front. If the point distribution is non-optimal, the resulting
loss of spatial accuracy will affect the accuracy of surface quantities such as normal and tangent vectors, local curvature, and
length/area, and this again may affect the accuracy of the interface tracking.

In order to construct a computational approach which will yield both high order temporal accuracy (e.g., second or third
order), as well as good spatial accuracy in the calculation of surface quantities, we need to solve the problem of automatically
obtaining a good point distribution in a satisfactory way. This problem is particularly acute in the context of using high order
methods. Despite the importance of this issue, very limited discussion or results appear to be available in the literature.
A front at time tn with an ‘‘optimal” point distribution. This interface is advanced by honoring the kinematic condition, while imposing a zero
ial grid velocity. The resulting point distribution at a later time tnþ1 is obviously no longer optimal.

xj

The plot depicts the position of a single grid point along the front at three different time levels (red circles). The point moves according to (2), with
u � n and w � t ¼ 0. The position at time level tnþ1 is xnþ1

j . Note that the corresponding positions at time levels tn and tn�1 do not correspond to the
uid particle; the path of the fluid particle (e.g., a particle which moves according to (1)) ending up at position xnþ1

j at time tnþ1 follows the dashed line.
erpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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We also mention a complicating factor in the development and assessment of various approaches for interface-tracking:
the lack of analytic solutions. In Section 4, we propose a few examples of test problems which we will use for verification
purposes.

3. The new approach

We propose a method which gives an accurate representation of the interface (i.e., the individual grid points end up on
the correct surface), as well as the flexibility of specifying a user defined point distribution. This method will be ‘‘automatic”
in the sense of fulfilling both goals in an ‘‘integrated” fashion, i.e., with no need for remeshing etc.

Our strategy is based on a combination of a pure Lagrangian approach and an ALE approach, in which both (1) and (2) are
integrated in order to find the new grid points. The algorithm we propose has two important ingredients: (i) we need to de-
fine what we mean by a good distribution of the grid points; (ii) we need to identify the fluid particles at time tn which will
end up at the valid locations (induced by (i)) at time tnþ1. There is flexibility in the choices made with respect to both (i) and
(ii). We propose two ways to define a good point distribution (see Section 3.2) and we explain how we efficiently deal with
(ii) in this work. We also discuss other possible choices which we do not implement.

Before we present the first version of the algorithm, we describe in some detail the way we represent all surface infor-
mation, i.e., the surface parameterization; this is done in Section 3.1. In Section 3.2, we propose two alternatives for how
to define a good distribution of the grid points, while in Section 3.3 we present the first version of the new method for track-
ing interfaces (with particular relevance to ALE schemes). The remaining part of Section 3 explains in detail the choices we
have made in order to realize our objectives.

3.1. Surface parameterization

In order to make the algorithm concrete, as well as reasonably simple, we limit our discussion to the case where the entire
front CðtÞ corresponds to an edge in a single spectral element. However, we remark that the ideas behind the proposed meth-
od is equally applicable to the case where the front is composed of a number of finite elements (low or high order).

A basic assumption we make is that the interface (or front) C at any given point in time is sufficiently smooth to warrant a
high order polynomial representation. This assumption is often fulfilled for free surface problems where surface-tension ef-
fects play a significant role. This is also the type of problems motivating this study.

Following a standard spectral element discretization [14], the front CðtÞ is parameterized as follows: for a given
n 2 bC ¼ ½�1;1�, the corresponding point x on CðtÞ is given as x ¼ ðx1; x2Þ ¼ ðx1ðnÞ; x2ðnÞÞ. In general, any field variable u asso-
ciated with the front can be represented in terms of the reference variable n. In particular, an Nth order polynomial approx-
imation un of u at time tn can be expressed in terms of the following nodal basis:
unðnÞ ¼
XN

j¼0

un
j ‘jðnÞ: ð3Þ
Here, un
j represents an approximation of uðnj; tnÞ; nj is the jth Gauss–Lobatto Legendre (GLL) point, and ‘jðnÞ is the Nth order

Lagrangian interpolant through the GLL points; as usual, ‘jðniÞ ¼ dij. For example, the coordinates xi; i ¼ 1;2, along the front
are represented as
ðxiÞnðnÞ ¼
XN

j¼0

ðxiÞnj ‘jðnÞ; i ¼ 1;2; ð4Þ
where ðxn
i Þj is the ith coordinate of the jth point at time tn. In order for this high order polynomial approximation to be accu-

rate, we rely on a good point distribution, i.e., a good distribution of the nodal coordinates ðxiÞnj ; j ¼ 0; . . . ;N, i ¼ 1;2, for all
times tn; n ¼ 0;1;2; . . .. A representation similar to (4) is done for the velocity components ui; i ¼ 1;2, as well as for the do-
main velocity wi; i ¼ 1;2. We use underscore to denote a vector comprising all the nodal values associated with a field var-
iable, e.g., the vector xn

1 represents all the values ðx1Þnj , j ¼ 0; . . . ;N, in (4). The following surface variables are assumed to be
known for a second order temporal scheme:
xn
i ; xn�1

i ; un
i ; un�1

i ; wn�1
i ; wn�2

i ; i ¼ 1;2:
3.2. Defining a good point distribution

We consider two alternative ways to define a good point distribution. The first strategy is illustrated in Fig. 4. Starting
from the front at time tn, we move the end points to time level tnþ1. How these points are moved will be problem dependent.
For example, if we consider a closed system where no particles enter or leave our computational domain, the movement will
correspond to a Lagrangian motion where the two end points follow the path of the fluid particles from tn to tnþ1 (see (1)).
Alternatively, the end points may move according to a standard ALE-formulation (see (2)).



Fig. 4. Strategy 1 for advancing the interface C from time level tn to the new time level tnþ1. First, the two end points are advanced. Next, the points along
the chord connecting the new end points of the interface are distributed according to a GLL distribution (the open circles). We now define normals to the
chord going through these points (the dotted lines). The intersection between these normals and the interface (the closed circles) define the coordinates of
the nodal points along Cðtnþ1Þ. Except for the end points of the interface, each nodal point along Cðtnþ1Þ corresponds to a fluid particle which at time tn had a
location somewhere along CðtnÞ, and typically not corresponding to a nodal point at time tn (open circle on CðtnÞ).
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When the position of the end points are updated, we construct the chord between the two end points, and distribute grid
points along this chord according to the desired distribution (in our case, a GLL distribution). Next, the normal from the chord
is constructed at each of these points. We then search for the particle at time tn which, when advanced through a pure
Lagrangian motion, is located somewhere along this normal. The advantage of this approach is that we are in full control
of the distribution of all the grid points at each time step. The disadvantage is that it may not be so easy to extend the ap-
proach to three dimensions.

The second strategy is illustrated in Fig. 5. Again, the end points are first advanced to tnþ1. Next, for each end point, a vec-
tor which connects the end point at tn to the corresponding end point at tnþ1 is constructed. Then, directional vectors for the
interior nodes are constructed through a linear interpolation of the end point vectors. Finally, the requirement is to find the
particle at time tn which, when advanced to tnþ1, is located along this interpolated vector starting at the grid point at time tn.
This strategy has the advantage that it is more easily extended to three dimensions. However, we have less explicit control
over the point distribution at each time level compared to Strategy 1.

3.3. First version of a second order temporal scheme

We now discuss the key ingredients in a second order temporal scheme; we will later discuss all the details, as well as the
extension to a third order scheme. In Algorithm 1, we present the first version of the new algorithm. Note that this version is
meant to represent the general idea and that all the steps are not necessarily implemented in this form (although this is also
an alternative).
Fig. 5. Strategy 2 for advancing the interface C from time level tn to the new time level tnþ1. First, two vectors connecting the end points at tn to the
corresponding end points at tnþ1 are constructed (solid lines with arrow heads). Next, directional vectors for the remaining nodes along the interface are
constructed based on a linear interpolation of the end vectors at the GLL points on the reference domain, bC. The dotted lines are these directional vectors
started at the nodal points at time tn . The intersection between these directional vectors and the interface (the closed circles) define the coordinates of the
nodal points along Cðtnþ1Þ. Except for the end points of the interface, each nodal point along Cðtnþ1Þ corresponds to a fluid particle which at time tn had a
location somewhere along CðtnÞ, and typically not corresponding to a nodal point at time tn (open circle).
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Algorithm 1. First version of a second order temporal scheme
for j ¼ 0 to N do
1. Guess nn.
repeat

2. Find nn�1ðnnÞ.
3. Compute

x̂1
i ¼ xn

i ðn
nÞ i ¼ 1;2;

û1
i ¼ un

i ðn
nÞ i ¼ 1;2;

û2
i ¼ un�1

i ðnn�1Þ i ¼ 1;2:

4. Compute ðxnþ1
i Þj ¼ x̂1

i þ Dt 3
2 û1

i � 1
2 û2

i

� �
; i ¼ 1;2.

5. Update nn.
until convergence

6. Compute ðwn
i Þj from ðxnþ1

i Þj ¼ ðxn
i Þj þ Dtð32 wn

i � 1
2 wn�1

i Þj; i ¼ 1;2.
end for
The position ðxiÞnþ1
j computed in Step 4 represents the integration of (1) for a single fluid particle using a second order

Adams–Bashforth scheme. The position of this fluid particle at time tn is given by xn
i ðn

nÞ for some reference coordinate nn.
The velocity of this fluid particle at time tn is given by un

i ðn
nÞ. The same fluid particle is at a position xn�1

i ðnn�1Þ for some ref-
erence coordinate nn�1. However, initially we don’t know if the computed grid point represents a valid point on Cðtnþ1Þ, e.g.,
consistent with Strategy 1 or Strategy 2 considered in this work. An iterative process in order to determine which fluid par-
ticle ends up in a valid position is therefore necessary. We obtain convergence when we have chosen the ‘‘correct” particle,
which amounts to choosing the ‘‘correct” nn at time tn and a corresponding nn�1 at time tn�1.

For a given nn, the computation of nn�1 may be found explicitly through a process involving integration backwards in time
(i.e., by computing the ‘‘foot of the characteristic”); we will discuss this alternative in Section 3.8. However, from Step 3 and 4
we see that what we actually need is the velocity the particle in question had at time tn�1 (denoted as û2

i ), and not necessarily
the position it had at time tn�1; we will later explain how we may exploit this fact.

When we have converged to the correct position ðxnþ1
i Þj of grid point j on Cðtnþ1Þ, see Step 4, we also compute the corre-

sponding grid velocity ðwn
i Þj such that an integration of (2) using a second order Adams–Bashforth method will result in the

same position; this is done in Step 6. Here, ðxn
i Þj; ðxnþ1

i Þj, and ðwn�1
i Þj are known, while ðwn

i Þj is the quantity we compute. The
reasons for computing the grid velocity in this way are: (i) it gives consistency with a pure Lagrangian approach; (ii) we indi-
rectly satisfy the kinematic condition; and (iii) we indirectly and ‘‘automatically” specify a tangential grid velocity such that
we obtain a good point distribution.

We mentioned earlier that it is quite common to combine the kinematic condition with a zero tangential domain velocity,
which implies that the grid points along the interface only moves in the normal direction; see Figs. 2 and 3. In this case, a
second order discretization of (2) can also be expressed as indicated in Step 6 of Algorithm 1, but with ðxn

i Þj; ðwn
i Þ, and ðwn�1

i Þj
as the known quantities, and ðxnþ1

i Þj as the unknown. However, as also discussed earlier, this approach does not ensure a
good point distribution.

3.4. Finding a fluid particle’s earlier velocities

The second order scheme presented in Algorithm 1 requires information about the velocities at time levels tn and tn�1 for
those fluid particles along the interface which end up at the grid points xnþ1

j ; j ¼ 0; . . . ;N, along Cðtnþ1Þ. One way to obtain the
necessary information is by tracking the characteristics backwards in time, and we will return to a discussion of this alter-
native later. We will here focus on a different approach which is inspired by the work in [15]. In either case, we need to deal
with the fact that the interface C changes shape as a function of time.

Since we assume that the same particles remain on the surface at all time, it is sufficient to solve a one-dimensional con-
vection problem forward in time in order to obtain the required information; we now explain this procedure. Consider the
following pure time-dependent convection problem along the interface Cðt� þ sÞ, where t� is either tn�1 or tn�2: Find uðs; sÞ
such that
@u
@s
þ us

@u
@s
¼ 0; on Cðt� þ sÞ;
uðs; s ¼ 0Þ ¼ u0ðsÞ; on Cðt�Þ:
Here, s is an arc-length variable, us ¼ u � t is the tangential component of the fluid velocity, and appropriate boundary con-
ditions are assumed on @Cðt� þ sÞ. The ALE formulation of this problem reads: find uðs; sÞ 2 X such that
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d
ds ðu;vÞ þ cðu;vÞ ¼ 0; 8v 2 X;

uðn; s ¼ 0Þ ¼ u0ðnÞ;
ð5Þ
where
ðu;vÞ ¼
Z
bC vuJs dn; ð6Þ

cðu;vÞ ¼
Z
bC vðus �wsÞ

@u
@n

dn�
Z
bC vu

@ws

@n
dn: ð7Þ
Here, X is an appropriate function space, e.g., X ¼ H1=2ðCÞ if all the field variables correspond to the trace of H1-functions in

the adjacent fluid domains. Furthermore, Js ¼ @x1
@n

� �2
þ @x2

@n

� �2
� �1=2

is the surface Jacobian, and ws ¼ w � t is the tangential

component of the domain velocity. Note that us �ws is zero on @C for all the model problems in our study. We also remark
that we have used the same symbol u for a field variable expressed both in the arc-length variable and in the reference
coordinate.

We discretize the convection problem (5) using a standard spectral element method in space [14] (with a single element),
and arrive at the following set of ordinary differential equations:
dðBs uÞ
ds

¼ �Csu;

uðs ¼ 0Þ ¼ u0:

ð8Þ
Here, Bs is the (diagonal) surface mass matrix with matrix elements
Bs
ij ¼ ð‘j; ‘iÞGLL;
Cs is the discrete convection operator along the surface (including the ‘‘surface divergence” of the domain velocity) with ma-
trix elements
Cs
ij ¼ cð‘j; ‘iÞGLL:
Here, subscript GLL refers to evaluation of the bilinear forms (6) and (7) by Gauss–Lobatto Legendre quadrature. Note that
both Bs and Cs are time-dependent.

If we integrate (8) from 0 to Dt with u0 ¼ un�1
i ; i ¼ 1;2, we observe that uðs ¼ DtÞ will be an approximation to the ith

velocity component at time tn�1 of the fluid particles which at time tn are located at the grid points along CðtnÞ. This approach
is inspired by the ideas presented in [15] in the context of constructing convection-Stokes splitting schemes in fixed geom-
etries, and extended to time-dependent domains in [1].

Note that û2
i in Algorithm 1 generally represents the velocity of a fluid particle at time tn�1 which does not coincide with a

grid point along Cðtn�1Þ. However, by computing the velocities at time tn�1 of the fluid particles which coincide with the grid
points of CðtnÞ (i.e., by solving (8)), we can use the polynomial expansion (3) to find the velocity at any value of the parameter
n. Moreover, a single value of n will now give us information about the velocity of a fluid particle at two different time levels
(tn and tn�1). This is also exactly the type of information we need in our algorithm; in fact, access to this information avoids
entirely the need to find nn�1ðnnÞ in Step 2 of Algorithm 1 and thus represents a simplification.

The approach is readily extended to velocities at earlier time levels as well. For instance, if we choose u0 ¼ un�2
i in (8),

uðs ¼ 2DtÞ will be an approximation to the ith velocity component at time tn�2 of the fluid particles which at time tn are
located at the grid points along CðtnÞ.

For the integration of (8) we have chosen the classical explicit fourth order Runge–Kutta scheme. In practice, the time step
Dt will be given by the associated Navier–Stokes solver. Similar to the convection subproblem treated in [15], the tangential
fluid velocity usðn; tÞ, the tangential domain velocity wsðn; tÞ, as well as the surface coordinates xiðn; tÞ; i ¼ 1;2, are each
approximated as a polynomial in time of one order lower than the Adams–Bashforth scheme used in Step 4 and Step 6 of
Algorithm 1. Thus, for a second order temporal scheme, a first order polynomial interpolation (extrapolation for ws) in time
is used for these quantities when solving (8), e.g.,
xiðtÞ ¼ xn�1
i þ ðx

n
i � xn�1

i Þ
Dt

ðt � tn�1Þ; tn�1
6 t 6 tn; i ¼ 1;2:
The extension to a third order scheme will use a second order polynomial approximation in time for us;ws and xi; i ¼ 1;2, in
the interval tn�2

6 t 6 tn.
To summarize this section: in Algorithm 1 we are interested in the velocities that particular fluid particles had at time

levels tn and tn�1. We choose u0 ¼ un�1
i in (8) and set ~un

i ¼ uðs ¼ DtÞ; i ¼ 1;2. Note that the total cost of solving (8) is only
OðN2Þ. We now have six sets of nodal values, xn

i ;u
n
i , and ~un

i , i ¼ 1;2, all associated with the interface CðtnÞ. By using the poly-
nomial expansion (3) we have thus six polynomial approximations, and all of these are defined along CðtnÞ. Hence, one par-
ticular value of n corresponds to the same fluid particle. Thus, there is no longer a need to compute nn�1ðnnÞ in Step 2 of
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Algorithm 1. We may now only focus on finding the appropriate nn which will allow us to achieve convergence in Step 4. The
modified version of the algorithm is summarized in Algorithm 2.

Algorithm 2. Second version of a second order temporal scheme
1. Solve (8) with u0 ¼ un�1
i and set ~un

i ¼ uðs ¼ DtÞ for i ¼ 1;2.
for j ¼ 0 to N do

2. Guess nn.
repeat

3. Compute

x̂1
i ¼ xn

i ðn
nÞ i ¼ 1;2;

û1
i ¼ un

i ðn
nÞ i ¼ 1;2;

û2
i ¼ ~un

i ðn
nÞ i ¼ 1;2:

4. Compute ðxnþ1
i Þj ¼ x̂1

i þ Dtð32 û1
i � 1

2 û2
i Þ; i ¼ 1;2.

5. Update nn.
until convergence
6. Compute ðwn

i Þj from ðxnþ1
i Þj ¼ ðxn

i Þj þ Dtð32 wn
i � 1

2 wn�1
i Þj; i ¼ 1;2.

end for
3.5. Finding the ‘‘correct” particle

We are searching for the position of a fluid particle at time level tn, as well as its velocities at time levels tn and tn�1, such
that the computed position of the fluid particle at time level tnþ1 according to Step 4 in Algorithm 1 or Algorithm 2 is a ‘‘valid”
position according to our desired point distribution (in our case, using either Strategy 1 or Strategy 2). As explained in the
previous section, the problem can be reduced to finding one particular value nn 2 bC; see Algorithm 2. Let us discuss two
alternative ways to do this. A comparison of the cost of the two alternatives will be made at the end of this section.

3.5.1. Direct search
One alternative is to do a direct search via a Newton iteration. Let us briefly explain this procedure in the very simple case

when the two end points are moving only in the x2-direction and Strategy 2 is employed. In this case, all the interpolated
direction vectors point in the x2-direction and the x1-coordinate of each grid point should remain fixed as the interface
evolves. Note that, even though the x1-component of the fluid velocity may be non-zero, we still want the grid points to
move only in the x2-direction through a discretization of (2); this is one of the features exploited when using the ALE-for-
mulation. Our objective with the front tracking algorithm is to automatically honor the kinematic condition and achieve a
good point distribution at the same time.

Combining Steps 3 and 4 of Algorithm 2 we can define
fjðnÞ ¼ ðx1Þnþ1
j � ðx1ÞnðnÞ þ Dt

3
2
ðu1ÞnðnÞ �

1
2
ð~u1ÞnðnÞ

� �� �
; ð9Þ
where ðx1Þnþ1
j ¼ ðx1Þ0j , i.e., equal to the initial x1-coordinate of grid point j. We can use a Newton iteration to find nn such that

fjðnnÞ ¼ 0. To this end, we also need information about f 0j ðnÞ. However, such derivative information is available by differen-
tiating ðx1ÞnðnÞ; ðu1ÞnðnÞ and ð~u1ÞnðnÞ using the expansion (3) for each of these variables. Once we have determined nn (which
in general does not correspond to a GLL point), we find the new (physical) coordinates for grid point j from
ðxiÞnþ1
j ¼ ðxiÞnðnnÞ þ Dt

3
2
ðuiÞnðnnÞ � 1

2
ðuiÞn�1ðnnÞ

� �
; i ¼ 1;2: ð10Þ
Note that ðxiÞnðnnÞ; i ¼ 1;2, is the position of the fluid particle at time tn which ends up in grid point j at time tnþ1. For a more
general situation, e.g., see Fig. 4, the one-dimensional function fjðnÞ will be slightly more complicated, but the approach will
involve a Newton iteration as in this simple case.

3.5.2. Solving an artificial convection problem
Instead of pursuing a direct search to find nn, we here wish to explore the possibility of using a completely different way of

finding the information we need. As mentioned earlier, all the pertinent surface information is parameterized using the ref-
erence variable n.

Assume that we are currently interested in obtaining information about the fluid particle which ends up in grid point j at
time tnþ1. Instead of doing a direct search for this fluid particle as explained above, we propose: (i) to define an artificial
convecting velocity U on bC; and (ii) to find a corresponding artificial time sn which will convect all the pertinent surface



Fig. 6. Six sets of nodal values, xn
i ;u

n
i , and ~un

i ; i ¼ 1;2, are associated with the reference domain bC. By integrating (12) from s ¼ 0 to s ¼ sn , we can artificially
convect the information associated with a particular nn 2 bC (i.e., associated with a particular fluid particle) and check if Step 4 in Algorithm 2 will give us a
‘‘valid” new position for a grid point along Cðtnþ1Þ.
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information about this particle to nj (the jth GLL point); see Fig. 6. Specifically, we consider the one-dimensional convection
problem
@u
@s
þ U

@u
@n
¼ 0; on bC;

uðs ¼ 0Þ ¼ u0:

ð11Þ
We assume that U ¼ 0 on @ bC (a similar condition was assumed for us in the previous section), and we will thus not specify
any particular boundary condition for u. We discretize (11) using a spectral element method [14] (with a single element)
and arrive at the following set of ordinary differential equations
bB du
ds
þ bCu ¼ 0;

uðs ¼ 0Þ ¼ u0:

ð12Þ
In (12), bB and bC are the mass matrix and discrete convection operator, respectively; the hat indicates that both matrices are
associated with bC. The idea is that, instead of searching for a suitable nn as we did in the first alternative, we search for a sn

such that we obtain the information we need when we integrate (12) from s ¼ 0 to s ¼ sn. The vector u0 in (12) can be one of
six sets of nodal values, xn

i ;u
n
i , and ~un

i ; i ¼ 1;2, i.e., we solve (12) six times. In summary, instead of searching for a particle as in
the first alternative, we ‘‘sit” at a fixed point (nj) and (artificially) convect the pertinent information about the particle to this
point.

Let us denote the solution vector of (12) at time s as uðs;u0Þwhere we have emphasized that the initial condition for this
problem is equal to u0; in particular, let ðuðs;u0ÞÞj denote the jth element of this solution vector. With this notation, (9) can
be modified to read
~f jðsÞ ¼ ðx1Þnþ1
j � ðuðs; xn

1ÞÞj þ Dt
3
2
ðuðs; un

1ÞÞj �
1
2
ðuðs; ~un

1ÞÞj
� �� �

: ð13Þ
This time we use a Newton iteration to find sn such that ~f jðsnÞ ¼ 0. To this end, we also need information about ~f 0jðsÞ, which
necessitates differentiating u with respect to s. However, using (12), the necessary information can be computed precisely
from
du
ds
ðs; u0Þ

 !
j

¼ bB�1bC uðs; u0Þ
� �

j
; ð14Þ
where u0 is either xn
1;u

n
1, or ~un

1. For the test problems considered in this study, (12) is solved using an explicit fourth order
Runge–Kutta scheme. Thus, the derivative information we need is automatically available from the vector constructed in the
last stage of the Runge–Kutta scheme (to be precise, the jth element of this vector). For the test problems explored in this
study, convergence in the Newton iteration is achieved in approximately 2 or 3 iterations.

At convergence, the particular value of sn is actually of no interest to us; all we need is uðsnÞ and then exploit the fact that
ðuðsn;u0ÞÞj ¼ ðu0Þðn

nÞ. Through this equivalence, we can directly update the new grid position using (10).
Note that there is great flexibility in the choice of the convective velocity, U. This is because, for a specific particle some-

where along the surface, and for a reasonable choice of U, there will always be a corresponding sn (perhaps negative) which
convects this particle to the current grid point (GLL point nj). An easy and convenient choice is UðnÞ ¼ 1� n2 since this veloc-
ity is very smooth, it does not change sign, and it is also compatible with the condition us �ws ¼ 0 at @C (which is the case
for all our numerical examples). Note that the artificial convecting velocity U in (12) is time-independent; the main purpose of
U is just to provide a mechanism by which pertinent information about a point is transported (as an alternative to a plain
search).

3.5.3. A comparison of the two alternatives
We now compare the two alternatives, in particular, the computational cost associated with finding the correct particles.

Note that this discussion does not include the cost of solving the problem (8) which scales like OðN2Þ.
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The alternative based on a direct search requires the evaluation of the six quantities xn
i ;u

n
i , and ~un

i ; i ¼ 1;2, at an arbitrary
value of the reference coordinate n. Using an expansion (3) for each quantity, each evaluation ostensibly requires approxi-
mately 2N floating point operations since there are N þ 1 terms to sum up. However, the computation of ‘kðnÞ for a general
value of n requires at least 2N operations for each k ¼ 0; . . . ;N. Hence the total cost is approximately 2N2 for each evaluation
of fjðnÞ.

The basis (3) is also used in order to compute derivative information at an arbitrary value of the reference coordinate n;
this is required in the Newton iteration. To this end, we first need to apply the differentiation matrix associated with the GLL
points at a cost of 2N2 operations (a single matrix–vector product), and then evaluate the derivative f 0j ðnÞ at an arbitrary value
of the reference coordinate n at a cost of about 6N operations (assuming that we store the earlier computed values of
‘kðnÞ; k ¼ 0; . . . ;N).

A direct search is used for all the internal GLL points. Hence, the total cost for the first alternative is about 2N3 operations
per Newton iteration.

Let us now discuss the second alternative; see Section 3.5.2. For each (internal) point we also need to do a Newton iter-
ation. At each Newton iteration we need to solve six convection problems of the type (12). We solve each convection prob-
lem using an explicit fourth order Runge–Kutta scheme and using a single time step. Hence, the cost of these six convection
problems is about 48 N2 operations (6 problems, 4 stages per problem, and one matrix–vector product evaluation per stage).
We remark that no additional computation is needed to obtain derivative information in the Newton iteration since this
information is automatically available from the last stage in the Runge–Kutta scheme. We also remark that, although our
initial experience has been very encouraging, a careful stability analysis of this alternative is still lacking.

Again, we need to apply this alternative approach for all the internal GLL points. Hence, the total cost for the second alter-
native is about 48N3 operations per Newton iteration.

In the numerical tests we consider later, we have only implemented the second alternative. The direct search approach
certainly has a smaller constant in front of the OðN3Þ scaling. However, there are also several reasons for choosing the second
alternative: (i) the extension to the multi-element case avoids any need to know in which element the fluid particle we are
searching for is located; (ii) easier and more convenient implementation on parallel computers (due to point (i)); (iii) the
scaling of the cost is similar; (iv) we would like to verify that an approach based on an artificial convection problem actually
works; (v) the cost of the entire front-tracking algorithm presented here is generally subdominant the cost of the solution of
the associated Navier–Stokes problem; see the discussion in Section 3.8 of the overall approach.

3.6. Final version of a second order temporal scheme

The discussion from the preceding sections leads us to our final version of an algorithm for a second order temporal
scheme; see Algorithm 3 below. We remark that the loop j ¼ 0; . . . ;N over the grid points includes the two end points of
the interface. These two end points may be treated differently compared to the inner points; this depends on the particular
information which is available for the end points. For instance, for our numerical test problems, we consider a ‘‘closed sys-
tem” where no particles enter or leave the domain (i.e., the interface), and the end points are moved in a pure Lagrangian
fashion according to (1).

Algorithm 3. Final version of a second order temporal scheme

1. Solve (8) with u0 ¼ un�1
i and set ~un

i ¼ uðs ¼ DtÞ for i ¼ 1;2.
for j ¼ 0 to N do

2. Guess sn.
repeat

3. Integrate (12) from 0 to sn six times with u0 ¼ xn
i ; u0 ¼ un

i ; u0 ¼ ~un
i , for i ¼ 1;2. Define the results as x̂i; û1

i ; û2
i ,

respectively.
4. Compute ðxnþ1

i Þj ¼ ðx̂iÞj þ Dt 3
2 û1

i � 1
2 û2

i

� �
j for i ¼ 1;2.

5. Update sn.
until convergence
6. Compute ðwn

i Þj from ðxnþ1
i Þj ¼ ðxn

i Þj þ Dt 3
2 wn

i � 1
2 wn�1

i

� �
j for i ¼ 1;2.

end for
3.7. Extension to a third order temporal scheme

Algorithm 4 represents a third order version of this method. We now have to first solve two problems of the type (8) for
each velocity component. During the integration of these problems, we need to use a second order polynomial approxima-
tion in time of the grid, the fluid velocity, and the grid velocity in order to maintain a third order temporal convergence rate.
Obviously, the overall integration scheme for integrating (8) must also be at least of third order in time. As before, we use an
explicit fourth order Runge–Kutta scheme, so this will not cause any problems. The solution of (12) will be the same as for
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the second order scheme except for the fact that we now have to solve 8 convection problems instead of 6. The cost of the
third order scheme will therefore be about 8/6 of the cost of a second order scheme since the cost associated with the loop
over the grid points will dominate. In Step 4 and Step 6, we use a third order Adams–Bashforth scheme to compute the new
position and the new grid velocity of each grid point, respectively.

Algorithm 4. Final version of a third order temporal scheme
1a. Solve (8) with u0 ¼ un�1
i and set ~un

i ¼ uðs ¼ DtÞ; i ¼ 1;2.
1b. Solve (8) with u0 ¼ un�2

i and set ~~un
i ¼ uðs ¼ 2DtÞ; i ¼ 1;2.

for j ¼ 0 to N
2. Guess sn.
repeat

3. Integrate (12) from 0 to sn eight times with u0 ¼ xn
i ;u0 ¼ un

i ;u0 ¼ ~un
i ;u0 ¼ ~~un

i ; i ¼ 1;2. Define the results as
x̂i; û1

i ; û
2
i ; û

3
i , respectively.

4. Compute ðxnþ1
i Þj ¼ ðx̂iÞj þ Dt 23

12 û1
i � 4

3 û2
i þ 5

12 û3
i

� �
j; i ¼ 1;2.

5. Update sn.
until convergence
6. Compute ðwn

i Þj from ðxnþ1
i Þj ¼ ðxn

i Þj þ Dt 23
12 wn

i � 4
3 wn�1

i þ 5
12 wn�2

i

� �
j; i ¼ 1;2.

end for
3.8. Discussion of the overall approach

A key ingredient of the proposed algorithm is to represent the values of the fluid velocity at earlier times (tn�1 and tn�2) in
terms of the polynomial basis associated with CðtnÞ. Having chosen what we mean by a good point distribution along the
new interface Cðtnþ1Þ, it is then sufficient to search for the ‘‘correct” particles along CðtnÞ which end up at valid locations
along Cðtnþ1Þ. In Section 3.5.3, we discussed two alternative ways to do this, and we explained our choice among these
two. The cost of the entire interface-tracking algorithm is OðN3Þ, dominated by the cost of finding the correct particles. Note
that this cost is independent of whether we choose Strategy 1 or Strategy 2.

We should mention that a completely different overall approach is also possible. Following the ideas behind semi-
Lagrangian schemes [6,22,21,7], we could have embarked directly on Algorithm 1. In this case, we would have to integrate
the characteristics backward in time. For example, starting at a reference coordinate value nn, i.e., a fluid particle located at
position xn

i ðn
nÞ; i ¼ 1;2, on CðtnÞ, we could then obtain access to the location of this particle at an earlier time tn�1. From this

location (xn�1
i ; i ¼ 1;2) we could determine the reference coordinate nn�1 associated with the mapping between bC and

Cðtn�1Þ, which again would allow us to find the value of the fluid particle’s earlier velocity, un�1
i ðnn�1Þ; i ¼ 1;2.

There are a couple of issues worth mentioning here. First, depending on how xn�1
i ; i ¼ 1;2, is obtained from

xn
i ðn

nÞ; i ¼ 1;2, the location xn�1
i ; i ¼ 1;2, could possibly correspond to a point which is not exactly on the interface

Cðtn�1Þ; see [21]. In this case, we would need to find the point along Cðtn�1Þ which is closest to xn�1
i ; i ¼ 1;2, before finding

the corresponding reference coordinate nn�1 through an iterative process.
Second, the search for the correct nn could be done similarly to the direct search approach discussed in Section 3.5.1. How-

ever, in the simple example discussed there, the function fjðnnÞ in (9) would have to be modified to read
fjðnnÞ ¼ ðx1Þnþ1
j � ðx1ÞnðnnÞ þ Dt

3
2
ðu1ÞnðnnÞ � 1

2
ðu1Þn�1ðnn�1ðnnÞÞ

� �� �
: ð15Þ
Similar to the approach we have chosen in this work, the overall cost for a semi-Lagrangian approach is alsoOðN3Þ operations
per Newton iteration.

There are several reasons why we have focused on the approach summarized in Algorithms 3 and 4. First and foremost,
our goal has been to develop a method for tracking an interface which is verifiably accurate and which automatically ensures
a good point distribution throughout the simulation; such a method seems to be lacking in the literature. Our motivation de-
rives from being able to track an interface in the context of an ALE scheme, e.g., solving a free surface problem where surface-
tension effects are important. In this context, the fluid velocity (which we assume is given here) is computed by solving the
Navier–Stokes equations. In the two-dimensional case, the computational cost of computing ui; i ¼ 1;2, will at best scale like
OðN3Þ with a large factor in front; this factor will be a product of the number of spectral elements in the two-dimensional
domain, the number of iterations needed to solve the associated linear system of equations, a factor associated with operator
evaluation per element and per type of discrete operator. Compared to this cost, the cost of the proposed algorithm will be
subdominant. Our choices have therefore emphasized other aspects of the various alternatives, such as avoiding the need for
a search and interpolation algorithm in the multiple element case, and avoiding any issue related to ‘‘hitting” the front in the
context of integrating the characteristics backwards in time. Again, the main focus has been on demonstrating that the over-
all objectives can be achieved; the particular choices considered here for the various components of the overall approach can,
of course, be substituted with other alternatives.
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4. Numerical results

In this section, we will perform numerical experiments in order to validate and compare the different algorithms for
tracking the interface. For all the test problems we will define a two-dimensional, time-dependent velocity field, and at time
t ¼ 0 we will specify an initial interface. With the interface ‘‘immersed” in this two-dimensional velocity field, we will then
monitor:

(1) how accurately we are able to follow the exact interface; and
(2) the quality of the corresponding point distribution.

The velocity fields will be prescribed in such a way that we are able to obtain analytic solutions for the exact interfaces at
all times.

4.1. Error computation

The way we compute the error, E1, in following the interface is illustrated in Fig. 7. We first compute the chord between
the end points of our numerical solution, and then compute the normal, nc , to this chord. For each grid point,
ðxnÞj; j ¼ 0; . . . ;N, along our numerically approximated interface, we find the intersection between the analytical front and
the line originating from ðxnÞj and moving in the nc-direction. We call this intersection ðxeÞj and compute
Fig. 7.
ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððxe

1Þj � ðxn
1ÞjÞ

2 þ ððxe
2Þj � ðxn

2ÞjÞ
2

q
:

Finally, we define the error E1 as
E1 ¼
1

N þ 1

XN

j¼0

ej: ð16Þ
The way we will measure the grid quality is by computing the error, E2, in the length of the interface. For a high order
approximation, this measure will generally give an indication of the quality of the point distribution (although there are spe-
cial situations when this is not the case). Thus, we first compute the length, Sn, of our numerically computed interface. Using
GLL quadrature we compute
Sn ¼
XN

a¼0

qaðJ
n
s Þa ¼

XN

a¼0

qa
@xn

1

@n

� �2

þ @xn
2

@n

� �2
 !1=2

a

; ð17Þ
where Jn
s is the surface Jacobian at time T ¼ tn, and qa;a ¼ 0; . . . ;N, are the GLL quadrature weights. We then define the error
E2 ¼ jSn � Sej; ð18Þ
where Se is the length of our exact interface.

4.2. Convergence tests

In order to more clearly see the strengths and the weaknesses of the different approaches, we will first consider three
examples where the velocity field is chosen such that the front keeps it shape. For these three tests, we will compare three
different approaches:
The solid line corresponds to our numerically computed interface at time T > 0, while the dashed line represents the corresponding exact interface.
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(i) the proposed method using Strategy 1 (see Fig. 4);
(ii) enforcing the kinematic condition as well as a zero tangential grid velocity (denoted as the ‘‘Normal” method in the

following);
(iii) a pure Lagrangian approach.

We have also tested the proposed method using Strategy 2 (see Fig. 5). However, Strategy 1 and Strategy 2 give almost
identical results for these test problems, so we only report convergence results using Strategy 1.

The fourth and last test will involve a more complex interface and a more complex velocity field; in this test we will only
compare (i) and (iii).

4.3. Test 1

In the first example, the interface motion is only in the x2-direction. The initial front given by
Fig. 8.
polynom
x2ðx1Þ ¼
1
2

1� cos
pðx1 � 1Þ

3

� �� �
; 1 6 x1 6 4;
while the prescribed velocity field is given as
u1ðx1; tÞ ¼ 0
u2ðx1; tÞ ¼ �
1
2
þ 1

2
et=4ð1þ cosðptÞÞ:
Thus, each particle on the initial front will only move in the x2-direction. Note that, for the Normal approach, we compute the
normals analytically (which we can do since we know the analytical expression of the front at all times), and not numerically.
A numerical computation of the normals will lead to the Normal algorithm breaking down due to the bad interpolation
properties when the point distribution becomes poor. Fig. 8 shows the initial point distribution and the point distribution
at the final time T ¼ 6:2 for the three different methods. In Figs. 9 and 10, we report the errors E1 and E2, respectively.
We observe that all three methods perform well in terms of ‘‘hitting” the front. However, for the Normal approach, the point
distribution is poor at T ¼ 6:2 due to the shape of the front; this again leads to a poor approximation of the length of the
front. For Strategy 1 and the Lagrangian method, the error E2 reaches machine precision since u2 does not depend on x1,
and we use a sufficiently large polynomial degree, N.

4.4. Test 2

Next, we will consider a trivial interface, but a velocity field with a more substantial tangential contribution. The initial
interface is given by
x2ðx1Þ ¼ 0; 1 6 x1 6 4;
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The interface and the point distribution at the initial time t ¼ 0 and at the final time T ¼ 6:2 for Test 1 using the three different approaches. A
ial degree N ¼ 16 is used for the spectral approximation.
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while the prescribed velocity field is
Fig. 10.
comput
and the

Fig. 9.
a single
u1ðx1; tÞ ¼
2
5

sin
pðx1 � 1Þ

3

� �
;

u2ðx1; tÞ ¼ �
1
2
þ 1

2
et=4ð1þ cosðptÞÞ:
Hence, the front has no curvature, and all the normals point in the x2-direction. Thus, u1ðx; tÞ corresponds to a pure tangential
component. Fig. 11 shows the initial point distribution and the point distribution at the final time T ¼ 6:2 for the three dif-
ferent methods. In Fig. 12, we report the error E1. We get first, second and third order temporal convergence in capturing the
interface for all three methods.

In Fig. 11, we see that the pure Lagrangian approach leads to a poor point distribution. However, this is not reflected in the
computation of the length due to the simplicity of the front. For this simple interface, (17) reduces to
Sn ¼
XN

a¼0

qa
@ðx1ÞN
@n

� �
a
¼
Z 1

�1

@ðx1ÞN
@n

dn;
since @ðx1ÞN
@n is an ðN � 1Þth degree polynomial which is integrated exactly using GLL quadrature. In addition, since
Z 1

�1

@ðx1ÞN
@n

dn ¼ ðx1ÞNð1Þ � ðx1ÞNð�1Þ;
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The error E2 at time T ¼ 6:2 for Test 1 using the three different approaches. A polynomial degree N ¼ 16 is used for the spectral approximation. The
ed value for the length of the interface, Sn , does not converge for the Normal method due to an incorrect point distribution. The results for Strategy 1
Lagrangian method are almost identical (the error is close to machine precision); hence, only a single convergence plot is shown for these methods.
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The error E1 at time T ¼ 6:2 for Test 1 using the three different approaches. A polynomial degree N ¼ 16 is used for the spectral approximation. Only
convergence plot is shown since all three methods give almost identical results.
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Fig. 11. The interface and the point distribution at the initial time t ¼ 0 and at the final time T ¼ 6:2 for Test 2 using the three different approaches. A
polynomial degree N ¼ 16 is used for the spectral approximation.
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Fig. 12. The error E1 at time T ¼ 6:2 for Test 2 using the three different approaches. A polynomial degree N ¼ 16 is used for the spectral approximation. Only
a single convergence plot is shown since all three methods give almost identical results.
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and since the end points are the same for all strategies, we achieve machine precision for all three methods regardless of the
quality of the grid. It should be emphasized that this is, indeed, a very special case.

4.5. Test 3

We now consider a combination of the previous two tests. The initial front is the same as in Test 1, but we prescribe a
velocity field with non-zero components in both the x1- and the x2-direction. In particular, we choose the same velocity field
as in Test 1, but with the modification that we also add another tangential component. Hence, the interface will still keep its
shape during the simulation. Our initial interface is then given by
x2ðx1Þ ¼
1
2

1� cos
pðx1 � 1Þ

3

� �� �
; 1 6 x1 6 4;
while the prescribed velocity field is given as
u1ðx1; tÞ ¼ ut
1;
u2ðx1; tÞ ¼ �
1
2
þ 1

2
et=4ð1þ cosðptÞÞ þ ut

2;
with
ut
1 ¼

2
5

sin
pðx1 � 1Þ

3

� �
;
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Fig. 13. The interface and the point distribution at the initial time t ¼ 0 and at the final time T ¼ 6:2 for Test 3 using the three different approaches. A
polynomial degree N ¼ 16 is used for the spectral approximation.
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Fig. 14. The error E1 at time T ¼ 6:2 for Test 3 using the three different strategies. A polynomial degree N ¼ 16 is used for the spectral approximation. Only a
single convergence plot is shown since all three methods give almost identical results.
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ut
2 ¼

p
6

sin
pðx1 � 1Þ

3

� �
2
5

sin
pðx1 � 1Þ

3

� �
:
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Fig. 15. The error E2 at time T ¼ 6:2 for Test 3 using the three different approaches. A polynomial degree N ¼ 16 is used for the spectral approximation. The
computed value for the length of the interface, Sn , does not converge for the normal method and for the Lagrangian method due to a highly incorrect point
distribution.
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Here, ut ¼ ut
1e1 þ ut

2e2 is a vector which points in the tangential direction of the interface. Fig. 13 shows the initial point dis-
tribution and the point distribution at the final time T ¼ 6:2 for the three different methods.

In Figs. 14 and 15, we report the errors E1 and E2, respectively. These results are in agreement with the two previous
numerical experiments. We observe that all three methods perform well in terms of ‘‘hitting” the front.

Strategy 1 still performs well with respect to both error measures. The Normal approach gives the same results as for
Test 1 since the only difference with this example is the addition of a tangential velocity component; again, the point dis-
tribution is poor. The grid quality for a pure Lagrangian approach is also poor; this is because the added tangential velocity
component will produce a (physical) point distribution which is far from the GLL point distribution on the reference
domain.

Another thing we observe is that the error level for E2 (the length computation) is about a factor 102 � 103 smaller than
the error level for E1 (the interface error). The reason for this is that the interface error is rather uniform, which again is due
to the simplicity of the problem. This makes the error in the spatial derivative of the interface substantially smaller than the
interface error, which again leads to a better approximation of the length of the front.

4.6. Test 4

The three previous test cases were all constructed to illuminate some of the strengths and weaknesses of the different
methods for tracking an interface; for this reason they were chosen to be rather simple. We now consider a more compli-
cated numerical example in order to demonstrate the applicability of the new strategy to solve more general problems.
We still choose a velocity field which depends on the initial shape of the front, and in such a way that we are able to derive
an analytical expression for the shape of the front at all times. A major difference from the previous test cases is that we now
choose a time-dependent front. In particular, we demand that the shape of the front is given by
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Fig. 16. The front x2ðx1; tÞ in (19) at different times when ‘‘immersed” in the prescribed velocity field.
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x2ðx1; tÞ ¼
1
4

cosðptÞ cos
pðx1 � 1Þ
3þ 0:4t

� �
� cos

3pðx1 � 1Þ
3þ 0:4t

� �� �
: ð19Þ
Hence, the front will have a time-dependent amplitude and a time-dependent wavelength. We also wish to rotate the front
in a circular motion, and in order to achieve this, the velocity field must be chosen in a careful manner. In particular, it con-
sists of four contributions:

� an angular velocity which is responsible for a pure rotation of the initial front. The angle is computed with respect to a
circle with center ð�4;0Þ, and a constant angular velocity uh ¼ 0:1 is imposed;

� a velocity field which accounts for the time-dependent amplitude in (19);
� a velocity field which ‘‘stretches” the front in accordance with the time-dependent wavelength in (19);
� an additional velocity field in the tangential direction on the front.
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Fig. 17. The interface and the point distribution at the initial time t ¼ 0 and at the final time T ¼ 5 for Test 4 using Strategy 1 and the Lagrangian approach.
A polynomial degree N ¼ 24 is used for the spectral approximation.
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Fig. 18. The error E1 at time T ¼ 5 for Test 4 using Strategy 1 and the Lagrangian approach. A polynomial degree N ¼ 24 is used for the spectral
approximation. Only a single convergence plot is shown since both methods give almost identical results.
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Fig. 19. The error E2 at time T ¼ 5 for Test 4 using Strategy 1 and the Lagrangian approach. A polynomial degree N ¼ 24 is used for the spectral
approximation. The computed value for the length of the interface, Sn , does not converge for the Lagrangian method due to an incorrect point distribution.
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By adding these four contributions, we obtain a smooth, two-dimensional, time-dependent velocity field. Apart from spa-
tial and temporal discretization errors, the initial front x2ðx1; t ¼ 0Þwill keep the shape given by (19) when ‘‘immersed” in our
velocity field; see Fig. 16.

In Fig. 17, we show the initial point distribution and the point distribution at the final time T ¼ 5 using Strategy 1 and a
Lagrangian approach. In Figs. 18 and 19, we report the errors E1 and E2 for the two methods, respectively. We see that Strat-
egy 1 performs well both in terms of ‘‘capturing” the front and in terms of giving the correct length. The Lagrangian approach
is also able to ‘‘capture” the front, but the point distribution is poor such that the error in the length of the front is large. Also,
compared with Test 3, the difference between the error levels for E1 and E2 is now much smaller; this is due to the time-
dependent amplitude in (19), which makes the interface error much less uniform.

5. Conclusions

We have presented a new approach for tracking an interface immersed in a given velocity field. The method is particularly
relevant to the simulation of unsteady free surface problems using the arbitrary Lagrangian–Eulerian framework. The new
method has been constructed with two goals in mind: (i) to be able to accurately follow the interface; and (ii) to automat-
ically maintain a good distribution of the grid points along the interface. The method combines information from a pure
Lagrangian approach with information from an ALE approach.

We have been able to construct two-dimensional model problems offering analytical expressions for both the interface as
well as the prescribed velocity field in which the interface (or front) is ‘‘immersed”. This has allowed us to verify and com-
pare the temporal accuracy of different methods: the new approach, a pure Lagrangian approach, and an approach honoring
the kinematic condition in the normal direction, but imposing a homogeneous Dirichlet condition for the tangential compo-
nent of the grid velocity (called the Normal approach).

Using the new approach we have been able to achieve both of our primary objectives; in particular, we have verified first,
second, and third order temporal accuracy for all four model problems. The new method is particularly important in the con-
text of using high order spatial discretization schemes.

Both the Lagrangian approach and the Normal approach generally give a non-optimal point distribution along the inter-
face, something which again may result in large errors in the computation of important surface quantities (e.g., normal and
tangent vectors, local curvature, length etc.). Such errors may, in the worst case, result in a complete breakdown of the inter-
face-tracking.

The new method should be extended to, and tested in, more general situations, in particular, by solving real free surface
problems using an ALE approach, and by extending the approach to three dimensions.
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